Sejam Bem Vindos!

Caros amigos internautas

Este Blog, cujo conteúdo principal é direcionado aos profissionais de segurança do trabalho, pode também ser utilizado por todos que se interessem pelo assunto.
Temos como lema servir sem pedir nada em troca; não precisa nem fazer cadastro, não nos interessa saber de dados pessoais de ninguém. Acesse e copie o que lhe interessar à vontade.
Porém, se alguém quiser espontaneamente compartilhar conosco algum texto ou arquivo interessante, será de muita valia e desde já agradecemos.

NOTA: os arquivos aqui referenciados e e disponibilizados, - salvo aqules que se pode copiar diretamente do blog, - somente estarão acessivieis por e-mail, pois, os provedores cobram pelo armazenamento e como não temos fins lucrativos não nos submetemos a eles. Ademais, temos que preservar os direitos autorais de terceiros.
----------------------------------------------------

PROFISSIONAIS DA CONSTRUÇÃO CIVIL

Visitem o blog ASSENOTEC - http://assenotec.blogspot.com/

Para cultura e variedades: PA-RUMÃO - http://pa-rumao.blogspot.com/

--------------------------------
Solicitação de arquivo: aromaosilva@bol.com.br

segunda-feira, 30 de janeiro de 2012

NOÇÕES BÁSICAS DE TOXICOLOGIA OCUPACIONAL–Parte I

Nota: o presente artigo será desdobrado em três partes por se tratar de texto muito extenso.

Antromsil

 

Profa. Rosângela barbosa de Deus

Escola de Farmácia/UFOP

 

imageI. INTRODUÇÃO

Com a industrialização em crescente expansão, os organismos vivos estão em contato contínuo com inúmeros agentes tóxicos em todos os ambientes, produtos tóxicos estão na comida que comemos, na água que bebemos e no ar que respiramos. De acordo com informações da Organização Mundial da Saúde, estima-se que ocorrem no Brasil cerca de doze mil casos de intoxicação todos os dias. Como a previsão é de uma morte a cada mil casos, a conclusão é que cerca de doze brasileiros morrem intoxicados por medicamentos e/ou outras substâncias químicas todos os dias.

Dependendo das propriedades químicas ou físicas, estes produtos podem ser absorvidos principalmente pelo trato gastrintestinal, pulmões e/ou pele. Felizmente o nosso organismo tem a capacidade de biotransformar e excretar estes compostos na urina, fezes e ar expirado. Entretanto, quando a capacidade de absorção excede a capacidade de eliminação, compostos tóxicos podem ser acumulados em concentrações críticas em um determinado órgão alvo do nosso organismo.

O conhecimento da disposição das substâncias químicas no organismo, bem como de seus produtos de biotransformação é de grande importância quando é analisada a toxicidade das substâncias que agridem os organismos vivos.

A Toxicologia vem, portanto nos ajudar a entender os efeitos nocivos causados pelas substâncias químicas ao interagirem com os organismos vivos, tendo por objetivo a avaliação do risco de intoxicação, e desta forma estabelecer medidas de segurança na utilização e conseqüentemente prevenir a intoxicação, antes que ocorram alterações da saúde.

Áreas da Toxicologia, dependendo do campo de atuação:

Toxicologia Ambiental: estuda os efeitos nocivos causados por substâncias químicas presentes no macroambiente (ar, água, solo);

Toxicologia Forense: estuda os aspectos médicos legais da intoxicação;

Toxicologia Social: estuda os efeitos adversos causados pelo uso de drogas, decorrente da vida em sociedade;

Toxicologia Clínica: estuda os efeitos nocivos causados pelo uso de medicamentos, drogas, etc.;

Toxicologia de Alimentos: estuda efeitos nocivos decorrentes da utilização de aditivos e da presença de resíduos de contaminantes em alimentos;

Toxicologia Ocupacional: estuda os efeitos nocivos causados por substâncias químicas presentes no ambiente de trabalho.

Nos últimos tempos, a Toxicologia Ocupacional tem merecido grande destaque porque se preocupa com a saúde dos trabalhadores que é a população produtiva de cada país.

A associação de algum efeito tóxico com uma determinada atividade profissional já é conhecida desde Paracelso e desde esta época procura-se estudar estes efeitos e estabelecer medidas de segurança no manuseio das inúmeras substâncias tóxicas que o homem é exposto em seus diferentes ambientes de trabalho.

Com o crescimento acelerado da indústria e o constante aumento do uso de produtos químicos, nem um tipo de ocupação está inteiramente livre da exposição a uma variedade de substâncias, capazes de produzirem efeitos indesejáveis sobre os sistemas biológicos. As medidas preventivas destinadas a este fim são conhecidas como procedimentos de monitoramento.

Está claro que se deve obter, pelo menos, um mínimo de informação a respeito da toxicidade das substâncias empregadas nas inúmeras ocupações do homem. Os estudos que possibilitam as obtenções dessas informações são os objetivos da toxicologia ocupacional.

Toxicologia Ocupacional foi definida, pelo comitê misto, que é constituído por: CCE/OSHA/NIOSH,

como:

“Atividade sistemática, contínua ou repetitiva, relacionada à saúde e desenvolvida para implantar medidas corretivas sempre que se façam necessárias”

COMITÊ MISTO

CCE – Comissão da Comunidade Européia

OSHA – Occupational Safety and Health Administration (USA)

NIOSH – National Institute for Occupational Safety and Health (USA)

Essencialmente, a toxicologia ocupacional procura prevenir o desenvolvimento das lesões tóxicas ou de doença profissional. Para cumprir tal objetivo é necessário um grande conhecimento sobre os agentes ocupacionais potencialmente tóxicos, especialmente informações sobre a toxicidade das substâncias e a relação dose/resposta.

Esses dados podem ser obtidos por meio de quatro fontes principais:

- experimentação em animais;

- experimentação em voluntários;

- observação ao acaso no ambiente de trabalho;

- pesquisas epidemiológicas.

Com os dados experimentais e epidemiológicos, torna-se possível definir critérios de segurança para cada substância (exemplo: as concentrações permissíveis) e adotar medidas de prevenção, que torne possível respeitar esses critérios. Dessa maneira, é mantida a saúde do trabalhador, ou em outras palavras, alcançado o objetivo da toxicologia ocupacional.

No mundo, em escala crescente, procura-se estabelecer e controlar os limites permissíveis (concentrações) de substâncias químicas no ambiente de trabalho, quando a exposição a uma substância química é inevitável, a fim de prevenir a intoxicação ocupacional. Essa prevenção é feita utilizando dois métodos de controle, que são complementares, mas que ainda hoje no Brasil, nem sempre são sempre aplicados.

I.1. Controle ou Monitoramento Ambiental

O monitoramento ambiental visa determinar os níveis de agentes químicos no ambiente ocupacional, para avaliar uma exposição potencial, isto é a quantidade do agente químico que pode alcançar os organismos vivos. Assim, com base nos dados obtidos e no conhecimento do risco toxicológico das substâncias, é possível evitar que a contaminação atinja níveis perigosos.

Pode se definir monitoramento ambiental como:

A medida e a avaliação, qualitativa e quantitativa, de agentes químicos no ambiente ocupacional para estimar a exposição ambiental e o risco à saúde, comparando os resultados com referencias apropriadas”.

Este controle foi por vários anos efetuado como único modo de se prevenir o aparecimento de alterações nocivas para a saúde decorrentes da exposição ocupacional. Baseia-se na definição, para um grande número de substancias químicas, como a concentração no ar abaixo da qual nenhum efeito tóxico deverá ocorrer em pessoas normais e na vigilância para que a exposição ocupacional não ultrapasse esses limites. Esse controle considera que os agentes tóxicos penetram no organismo por inalação.

Para se estabelecer as concentrações máximas para uma exposição ocupacional uma série de informações cientificas são exigidas, tais como: os conhecimentos das propriedades físico-químicos; investigações toxicológicas sobre toxicidade aguda, sub- aguda e crônica pelas diversas vias de introdução; experimentos em animais e observações no homem. Pode se notar, que os estudos para a fixação dos limites permissíveis são complexos e dispendiosos, e apenas alguns países os realizam. Assim os EUA, “URSS”, Alemanha, Suécia e Tchecoslováquia determinam esses limites, enquanto outros paises, como a Inglaterra, Argentina, Peru, Noruega, Brasil etc, adotam os limites dos EUA com as adaptações necessárias as condições de trabalho em cada país.

No Brasil estas adaptações são feitas de acordo com a área, podendo ser do Ministério do Trabalho, da Saúde, etc. A NR-15 (Norma Regulamentadora nº 15, 1978, Ministério do Trabalho, utiliza os valores adaptados da ACGIH-USA de 1977. Estes valores foram reduzidos em 78% em virtude da jornada semanal no Brasil ser de 48 horas, naquela época (até 1989), com relação às 40h preconizadas pela ACGIH).

Os Limites de Exposição Ocupacional – LEO, propostos pela ACGIH - USA (American Conference of Governamental Industrial Hygienist), são os chamados TLV’s onde:

TLV (THERESOLD LIMIT VALUE) “referem-se às concentrações das substâncias dispersas na atmosfera que representam as condições sob as quais se acredita, que quase todos os trabalhadores possam estar expostos continua e diariamente, sem apresentar efeitos adversos à saúde”.

“Os valores de TLV são calculados para um período de 7 a 8h por dia, num total de 40h semanais, sem que isso traga danos para a sua saúde. O TLV é uma média que permite flutuações em torno dela, desde que no final da jornada de trabalho o valor médio tenha sido mantido.”

Os principais tipos de TLV são:

ü TLV – TWA (Time Weight Average) – È a concentração média ponderada pelo tempo de exposição para a jornada de 8h/dia, 40h/semana, à qual praticamente todos os trabalhadores podem se expor, repetidamente, sem apresentar efeitos nocivos.

ü TLV –STEL ((Short Time Exposure Limit) – É a concentração na qual os trabalhadores podem se expor, por um curto período, sem apresentar efeitos adversos. O tempo máximo de exposição aos valores do TLV- STEL é de 15 minutos, podendo ocorrer, no máximo, 4 vezes durante a jornada, sendo o intervalo de tempo entre cada ocorrência de pelo menos 60 minutos. O TLV – TWA não pode ser ultrapassado ao fim da jornada.

Os valores de TLV – STEL devem ser vistos como complementos dos valores de TLV – TWA. Na verdade servem para controlar flutuações das concentrações das substâncias acima dos valores de TWA estabelecidos. Os valores de TLV – STEL são determinados para substâncias que apresentam efeitos nocivos agudos, prioritariamente aos efeitos crônicos.

ü TLV – C (Ceiling) – É a concentração máxima permitida que não pode ser ultrapassada em momento algum durante a jornada de trabalho. Normalmente é indicado para substâncias de alta toxicidade e baixo limite de exposição.

“Contudo devido a grande variação na suscetibilidade individual uma pequena % de trabalho pode sentir desconforto diante de certas substâncias em concentrações permissíveis segundo os LTs, ou mesmo abaixo deles: um número menor pode ser mais seriamente afetado pelo agravamento de uma condição pré- existente ou pelo desenvolvimento de uma doença ocupacional”, absoluto e não pode ser em nenhum momento. Nos EUA esse valor máximo é adotado para algumas substâncias com sigla TLVc,como foi visto acima.

 

clip_image001Esquematicamente tem –se

LT - Os limites de exposição ocupacional da NR-15, no Brasil, são chamados de Limites de Tolerância (LT) e são compilados das tabelas dos valores de TLV-TWA e se referem às concentrações médias máximas que não devem ser ultrapassadas numa jornada de 8h/dia, 48 horas/semana. É também uma média que permite flutuação ao longo da jornada de trabalho. Os LT brasileiros são extrapolados dos TLV através de uma média aritmética.

Nos EUA é calculado periodicamente o chamado nível de ação (NA), ou seja, a concentração a partir da qual os controles médicos e periódicos devem ser iniciados. De acordo com a legislação Brasileria e recomendações internacionais o NA corresponde a uma concentração igual a metade das concentrações máximas permitidas.

 

clip_image003Onde:

NA = Nível de Ação

LEO = Limite de Exposição Ocupacional

Esquematicamente têm-se:

clip_image004

Metais Pesados e seus efeitos

www.mundodoquimico.hpg.com.br

Metais Pesados

Imagem de “gotas” de mercúrio.

Acredita-se que os metais talvez sejam os agentes tóxicos mais conhecidos pelo homem. Há aproximadamente 2.000 anos a.C., grandes quantidades de chumbo eram obtidas de minérios, como subproduto da fusão da prata e isso provavelmente tenha sido o início da utilização desse metal pelo homem.

Os metais pesados diferem de outros agentes tóxicos porque não são sintetizados nem destruídos pelo homem. A atividade industrial diminui significativamente a permanência desses metais nos minérios, bem como a produção de novos compostos, além de alterar a distribuição desses elementos no planeta.

A presença de metais muitas vezes está associada à localização geográfica, seja na água ou no solo, e pode ser controlada, limitando o uso de produtos agrícolas e proibindo a produção de alimentos em solos contaminados com metais pesados.

Todas as formas de vida são afetadas pela presença de metais dependendo da dose e da forma química. Muitos metais são essenciais para o crescimento de todos os tipos de organismos, desde as bactérias até mesmo o ser humano, mas eles são requeridos em baixas concentrações e, pois, utilizados em concentrações altas, podem danificar sistemas biológicos.

Os metais são classificados em:

1. elementos essenciais: sódio, potássio, cálcio, ferro, zinco, cobre, níquel e magnésio;

2. micro-contaminantes ambientais: arsênico, chumbo, cádmio, mercúrio, alumínio, titânio, estanho e tungstênio;

3. elementos essenciais e simultaneamente micro-contaminantes: cromo, zinco, ferro, cobalto, manganês e níquel.

Os efeitos tóxicos dos metais sempre foram considerados como eventos de curto prazo, agudos e evidentes, como anúria (diminuição ou supressão da secreção urinária; anuria) e diarréia sanguinolenta, decorrentes da ingestão de mercúrio. Atualmente, ocorrências a médio e longo prazo são observadas, e as relações causa-efeito são pouco evidentes e quase sempre subclínicas. Geralmente esses efeitos são difíceis de serem distinguidos e perdem em especificidade, pois podem ser provocados por outras substâncias tóxicas ou por interações entre esses agentes químicos.

A manifestação dos efeitos tóxicos está associada à dose e pode distribuir-se por todo o organismo, afetando vários órgãos, alterando os processos bioquímicos, organelas e membranas celulares.

Acredita-se que pessoas idosas e crianças sejam mais susceptíveis às substâncias tóxicas. As principais fontes de exposição aos metais tóxicos são os alimentos, observando-se um elevado índice de absorção gastrointestinal.

Em adição aos critérios de prevenção usados em saúde ocupacional e de monitorização ambiental, a biomonitorização tem sido utilizada como indicador biológico de exposição, e toda substância ou seu produto de biotransformação, ou qualquer alteração bioquímica observada nos fluídos biológicos, tecidos ou ar exalado, mostra a intensidade da exposição e/ou a intensidade dos seus efeitos.

Recentemente, tem sido noticiado na mídia escrita e falada a contaminação de adultos, crianças, lotes e vivendas residenciais, com metais pesados, principalmente por chumbo e mercúrio. Contudo, a maioria da população não tem informações precisas sobre os riscos e as conseqüências da contaminação por esses metais para a saúde humana.

O caso fatídico em Bauru, SP, é um dos exemplos dessa contaminação. A Indústria de Acumuladores Ajax, uma das maiores fábricas de baterias automotivas do país localizada no km 112 da Rodovia Bauru-Jaú, contaminou com chumbo expelido pelas suas chaminés 113 crianças, sendo encontrados índices superiores a 10 miligramas/decilitro (ACEITUNO, 18-04-2002).

Foram constatados ainda a contaminação de animais, leite, ovos e outros produtos agrícolas, resultando em um enorme prejuízo para os proprietários. Um dos casos mais interessantes foi o de uma criança de 10 anos, moradora de um Núcleo Habitacional localizado próximo à fonte poluidora. Desde os 7 meses de idade sofria de diarréia e de deficiência mental. Somente após suspeitas dessa contaminação, em 1999, quando amostras do seu sangue foram enviadas a dois centros toxicológicos nos Estados Unidos, é que foi constatada a intoxicação por chumbo, urânio, alumínio e cádmio (ACEITUNO, 18-04-2002).

A cidade de Paulínia, em SP, e o bairro Vila Carioca também foram contaminados pela Shell Química do Brasil. Em Paulínia, dos 166 moradores submetidos a exames, 53% apresentaram contaminação crônica e 56% das crianças revelaram altos índices de cobre, zinco, alumínio, cádmio, arsênico e manganês. Em adição observou-se também, a incidência de tumores hepáticos e de tiróide, alterações neurológicas, dermatoses, rinites alérgicas, disfunções gastrointestinais, pulmonares e hepáticas (GUAIUME, 23-08-2001).

Dos 2,9 milhões de toneladas de resíduos industriais perigosos gerados anualmente no Brasil, somente 600 mil toneladas recebem tratamento adequado, conforme estimativa da Associação Brasileira de Empresas de Tratamento, Recuperação e Disposição de Resíduos Especiais (ABETRE). Os 78% restantes são depositados indevidamente em lixões, sem qualquer tipo de tratamento (CAMPANILI, 02-05-2002).

Recentemente a companhia Ingá, indústria de zinco, situada a 85 km do Rio de Janeiro, na ilha da Madeira, que atualmente está desativada, transformou-se na maior área de contaminação de lixo tóxico no Brasil. Metais pesados como zinco, cádmio, mercúrio e chumbo continuam poluindo o solo, a água e atingem o mangue, afetando a vida da população. Isso ocorreu porque os diques construídos para conter a água contaminada não têm recebido manutenção há 5 anos, e dessa forma os terrenos próximos foram inundados, contaminando a vegetação do mangue.

ARSÊNICO (As) – Que contém arsênio pentavalente. Diz-se de um ácido composto de dois átomos de arsênio e cinco de oxigênio.

(ARSÊNIO - elemento químico de número atômico 33 (símb.: As))

O arsênico é um metal de ocorrência natural, sólido, cristalino, de cor cinza-prateada. Exposto ao ar, perde o brilho e torna-se um sólido amorfo de cor preta. Esse metal é utilizado como agente de fusão para metais pesados, em processos de soldagens e na produção de cristais de silício e germânio. O arsênico é usado na fabricação de munição, ligas e placas de chumbo de baterias elétricas. Na forma de arsenito é usado como herbicida e como arsenato, é usado nos inseticidas.

No homem produz efeitos nos sistemas respiratório, cardiovascular, nervoso e hematopoiético. No sistema respiratório ocorre irritação com danos nas mucosas nasais, laringe e brônquios. Exposições prolongadas podem provocar perfuração do septo nasal e rouquidão característica e, a longo prazo, insuficiência pulmonar, traqueobronquite e tosse crônica.

No sistema cardiovascular são observadas lesões vasculares periféricas e alterações no eletrocardiograma. No sistema nervoso, as alterações observadas são sensoriais e polineuropatias, e no sistema hematopoiético observa-se leucopenia, efeitos cutâneos e hepáticos. Tem sido observada também a relação carcinogênica do arsênico com o câncer de pele e brônquios.

CHUMBO (Pb). Elemento metálico, de símbolo Pb, número atômico 82, massa atômica 207,20

Há mais de 4.000 anos o chumbo é utilizado sob várias formas, principalmente por ser uma fonte de prata. Antigamente, as minas de prata eram de galena (minério de chumbo), um metal dúctil, maleável, de cor prateada ou cinza-azulada, resistente à corrosão. Os principais usos estão relacionados às indústrias extrativa, petrolífera, de baterias, tintas e corantes, cerâmica, cabos, tubulações e munições.

O chumbo pode ser incorporado ao cristal na fabricação de copos, jarras e outros utensílios, favorecendo o seu brilho e durabilidade. Assim, pode ser incorporado aos alimentos durante o processo de industrialização ou no preparo doméstico.

Compostos de chumbo são absorvidos por via respiratória e cutânea. Os chumbos tetraetila e tetrametila também são absorvidos através da pele intacta, por serem lipossolúveis.

O sistema nervoso, a medula óssea e os rins são considerados órgãos críticos para o chumbo, que interfere nos processos genéticos ou cromossômicos e produz alterações na estabilidade da cromatina em cobaias, inibindo reparo de DNA e agindo como promotor do câncer.

A relação chumbo - síndrome associada ao sistema nervoso central depende do tempo e da especificidade das manifestações. Destaca-se a síndrome encéfalo-polineurítica (alterações sensoriais, perceptuais, e psicomotoras), síndrome astênica (fadiga, dor de cabeça, insônia, distúrbios durante o sono e dores musculares), síndrome hematológica (anemia hipocrômica moderada e aumento de pontuações basófilas nos eritrócitos), síndrome renal (nefropatia não específica, proteinúria, aminoacidúria, uricacidúria, diminuição da depuração da uréia e do ácido úrico), síndrome do trato gastrointestinal (cólicas, anorexia, desconforto gástrico, constipação ou diarréia), síndrome cardiovascular (miocardite crônica, alterações no eletrocardiograma, hipotonia ou hipertonia, palidez facial ou retinal, arteriosclerose precoce com alterações cerebrovasculares e hipertensão) e síndrome hepática (interferência de biotransformação).

CÁDMIO (Cd) - Elemento metálico branco, de símbolo Cd, número atômico 48, massa atômica 112,41

O cádmio é encontrado na natureza quase sempre junto com o zinco, em proporções que variam de 1:100 a 1:1000, na maioria dos minérios e solos. É um metal que pode ser dissolvido por soluções ácidas e pelo nitrato de amônio. Quando queimado ou aquecido, produz o óxido de cádmio, pó branco e amorfo ou na forma de cristais de cor vermelha ou marrom. É obtido como subproduto da refinação do zinco e de outros minérios, como chumbo-zinco e cobre-chumbo-zinco.

A galvanoplastia (processo eletrolítico que consiste em recobrir um metal com outro) é um dos processos industriais que mais utiliza o cádmio (entre 45 a 60% da quantidade produzida por ano). O homem expõe-se ocupacionalmente na fabricação de ligas, varetas para soldagens, baterias Ni-Cd, varetas de reatores, fabricação de tubos para TV, pigmentos, esmaltes e tinturas têxteis, fotografia, litografia e pirotecnia, estabilizador plástico, fabricação de semicondutores, células solares, contadores de cintilação, retificadores e lasers.

O cádmio existente na atmosfera é precipitado e depositado no solo agrícola na relação aproximada de 3 g/hectares/ano. Rejeitos não-ferrosos e artigos que contêm cádmio contribuem significativamente para a poluição ambiental. Outras formas de contaminação do solo são através dos resíduos da fabricação de cimento, da queima de combustíveis fósseis e lixo urbano e de sedimentos de esgotos.

Na agricultura, uma fonte direta de contaminação pelo cádmio é a utilização de fertilizantes fosfatados. Sabe-se que a captação de cádmio pelas plantas é maior quanto menor o pH do solo. Nesse aspecto, as chuvas ácidas representam um fator determinante no aumento da concentração do metal nos produtos agrícolas.

A água é outra fonte de contaminação e deve ser considerada não somente pelo seu consumo como água potável, mas também pelo seu uso na fabricação de bebidas e no preparo de alimentos. Sabe-se que a água potável possui baixos teores de cádmio (cerca de 1 mg/L), o que é representativo para cada localidade.

O cádmio é um elemento de vida biológica longa (10 a 30 anos) e de lenta excreção pelo organismo humano. O órgão alvo primário nas exposições ao cádmio a longo prazo é o rim. Os efeitos tóxicos provocados por ele compreendem principalmente distúrbios gastrointestinais, após a ingestão do agente químico. A inalação de doses elevadas produz intoxicação aguda, caracterizada por pneumonite e edema pulmonar.

MERCÚRIO (Hg) - Elemento metálico, pesado, branco-prateado, líquido e venenoso. Símbolo Hg, número atômico 80, massa atômica 200,61.

A progressiva utilização do mercúrio para fins industriais e o emprego de compostos mercuriais durante décadas na agricultura resultaram no aumento significativo da contaminação ambiental, especialmente da água e dos alimentos.

Uma das razões que contribuem para o agravamento dessa contaminação é a característica singular do Ciclo do Mercúrio no meio ambiente. A biotransformação por bactérias do mercúrio inorgânico a metilmercúrio é o processo responsável pelos elevados níveis do metal no ambiente.

O mercúrio é um líquido inodoro e de coloração prateada. Os compostos mercúricos apresentam uma ampla variedade de cores.

Nos processos de extração, o mercúrio é liberado no ambiente principalmente a partir do sulfeto de mercúrio. O mercúrio e seus compostos são encontrados na produção de cloro e soda caústica (eletrólise), em equipamentos elétricos e eletrônicos (baterias, retificadores, relés, interruptores etc), aparelhos de controle (termômetros, barômetros, esfingnomanômtros), tintas (pigmentos), amálgamas dentárias, fungicidas (preservação de madeira, papel, plásticos etc), lâmpadas de mercúrio, laboratórios químicos, preparações farmacêuticas, detonadores, óleos lubrificantes, catalisadores e na extração de ouro.

O trato respiratório é a via mais importante de introdução do mercúrio. Esse metal demonstra afinidade por tecidos como células da pele, cabelo, glândulas sudoríparas, glândulas salivares, tireóide, trato gastrointestinal, fígado, pulmões, pâncreas, rins, testículos, próstata e cérebro.

A exposição a elevadas concentrações desse metal pode provocar febre, calafrios, dispnéia e cefaléia, durante algumas horas. Sintomas adicionais envolvem diarréia, cãibras abdominais e diminuição da visão. Casos severos progridem para edema pulmonar, dispnéia e cianose. As complicações incluem enfisema, pneumomediastino e morte; raramente ocorre falência renal aguda.

Pode ser destacado também o envolvimento da cavidade oral (gengivite, salivação e estomatite), tremor e alterações psicológicas. A síndrome é caracterizada pelo eretismo (insônia, perda de apetite, perda da memória, timidez excessiva, instabilidade emocional). Além desses sintomas, pode ocorrer disfunção renal.

CROMO (Cr) - Elemento metálico, de símbolo Cr, número atômico 24, massa atômica 52,01.

O cromo é obtido do minério cromita, metal de cor cinza que reage com os ácidos clorídrico e sulfúrico. Além dos compostos bivalentes, trivalentes e hexavalentes, o cromo metálico e ligas também são encontrados no ambiente de trabalho. Entre as inúmeras atividades industriais, destacam-se: galvanoplastia, soldagens, produção de ligas ferro-cromo, curtume, produção de cromatos, dicromatos, pigmentos e vernizes.

A absorção de cromo por via cutânea depende do tipo de composto, de sua concentração e do tempo de contato. O cromo absorvido permanece por longo tempo retido na junção dermo-epidérmica e no estrato superior da mesoderme.

A maior parte do cromo é eliminada através da urina, sendo excretada após as primeiras horas de exposição. Os compostos de cromo produzem efeitos cutâneos, nasais, bronco-pulmonares, renais, gastrointestinais e carcinogênicos. Os cutâneos são caracterizados por irritação no dorso das mãos e dos dedos, podendo transformar-se em úlceras. As lesões nasais iniciam-se com um quadro irritativo inflamatório, supuração e formação crostosa. Em níveis bronco-pulmonares e gastrointestinais produzem irritação bronquial, alteração da função respiratória e úlceras gastroduodenais.

MANGANÊS (Mn) - Elemento metálico branco-acinzentado, ordinariamente duro e quebradiço, usado em diversas ligas. Símbolo Mn, número atômico 25, massa atômica 54,93.

O manganês é um metal cinza semelhante ao ferro, porém mais duro e quebradiço. Os óxidos, carbonatos e silicatos de manganês são os mais abundantes na natureza e caracterizam-se por serem insolúveis na água. O composto ciclopentadienila-tricarbonila de manganês é bem solúvel na gasolina, óleo e álcool etílico, sendo geralmente utilizado como agente anti-detonante em substituição ao chumbo tetraetila.

Entre as principais aplicações industriais do manganês, destacam-se a fabricação de fósforos de segurança, pilhas secas, ligas não-ferrosas (com cobre e níquel), esmalte porcelanizado, fertilizantes, fungicidas, rações, eletrodos para solda, magnetos, catalisadores, vidros, tintas, cerâmicas, materiais elétricos e produtos farmacêuticos (cloreto, óxido e sulfato de manganês). As exposições mais significativas ocorrem através dos fumos e poeiras de manganês.

O trato respiratório é a principal via de introdução e absorção desse metal nas exposições ocupacionais. No sangue, esse metal encontra-se nos eritrócitos, 20-25 vezes maior que no plasma.

Os sintomas dos danos provocados pelo manganês no SNC podem ser divididos em três estágios:

1º: subclínico - astenia, distúrbios do sono, dores musculares, excitabilidade mental e movimentos desajeitados;

2º: início da fase clínica - transtorno da marcha, dificuldade na fala, reflexos exagerados e tremor, e

3º: clínico - psicose maníaco-depressiva e a clássica síndrome que lembra o Parkinsonismo.

Além dos efeitos neurotóxicos, há maior incidência de bronquite aguda, asma brônquica e pneumonia.

 

-------------------------

Bibliografia

1. ACEITUNO, J. Mais 22 crianças estão contaminadas com chumbo em Bauru. O ESTADO DE SÃO PAULO. 12-04-2002.

2. ACEITUNO, J. Já são 76 crianças contaminadas por chumbo em Bauru. O ESTADO DE SÃO PAULO. 18-04-2002.

3. ACEITUNO, J. Ministério inspeciona atendimento aos contaminados por chumbo. O ESTADO DE SÃO PAULO. 07-05-2002.

4. CAMPANILI, M. Apenas 22% dos resíduos industriais têm tratamento adequado. O ESTADO DE SÃO PAULO. 02-05-2002.

5. Descoberta a maior área de contaminação de lixo químico do Brasil. JORNAL NACIONAL. 09-04-2002.

6. GUAIME, S. Laudo comprova contaminação dos moradores de Paulínia. O ESTADO DE SÃO PAULO. 23-08-01.

7. MUNG, M. CPI vai pedir interdição de terminal da Shell em SP. O ESTADO DE SÃO PAULO. 03-05-2002.

8. SALGADO, P. E. T. Toxicologia dos metais. In: OGA, S. Fundamentos de toxicologia. São Paulo, 1996. cap. 3.2, p. 154-172.

9. SALGADO, P. E. T. Metais em alimentos. In: OGA, S. Fundamentos de toxicologia. São Paulo, 1996. cap. 5.2, p. 443-460.

10. TREVORS, J. T.; STRATDON, G. W. & GADD, G. M. Cadmium transport, resistance, and toxicity in bacteria, algae, and fungi. Can. J. Microbiol., 32: 447-460, 1986.

11. ZIMBRES, E. www.meioambiente.pro.br

Dr. Mario Julio Avila-Campos (Professor Associado do Depto. Microbiologia - USP)